
Journal of Approximation Theory 103, 78�90 (2000)

Optimal Estimates for the Linear Interpolation
Error on Simplices

Martin Sta� mpfle

Department of Mathematics VI, University of Ulm, 89069 Ulm, Germany
E-mail: staempfle�mathematik.uni-ulm.de

Communicated by Carl de Boor

Received March 5, 1998; accepted in revised form September 16, 1999

This paper presents a comprehensive collection of various error estimates for
linear interpolation on simplices. The survey covers many relevant aspects such as
geometric facts about simplices, functions of several smoothness classes and
arbitrary dimension, and different forms of derivatives. Most estimates involve con-
stants that are best possible. Extremal functions and simplices are provided for all
sharp inequalities. � 2000 Academic Press

Key Words: linear interpolation; interpolation error; simplex.

1. INTRODUCTION

The aim of this paper is to develop optimal estimates for the error in
linear interpolation at the vertices of a simplex. Thereby, the intention is to
obtain sharp bounds that are independent of the simplex geometry and
shape. Only the diameter and two ball radii are used to describe the size
of a simplex. We consider the general case in with multivariate, vector-
valued functions of arbitrary dimension and degree of smoothness are
allowed. The estimates are based only on measures of smoothness of a
function and hence do not exploit special function features.

The results can be easily extended to linear vertex splines since the
approximation method considered is entirely local. Vertex splines are used
in many applications including finite element methods, surface modelling,
and visualization. The simplest way to generalize univariate splines with
respect to the dimension is to consider products of univariate splines which
are called tensor splines. Following this concept, the decomposition of the
domain is restricted to multi-dimensional intervals. In contrast, vertex
splines based on simplices are more flexible, since they can be used with
any domain that can be triangulated. This advantage shows the importance
of multivariate vertex splines in the approximation and modelling of sur-
faces and volumes (see [8] or [9]). For an introduction to multivariate
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splines we refer to [7] and [13]. The dimension and existence of bases for
multivariate spline spaces are discussed in [2] and [3]. In view of this
strong background the crucial role of good error estimates is obvious.

2. LINEAR INTERPOLATION ON A SIMPLEX

An m-simplex S in Rn is the convex hull of m+1 affinely independent
vertices v0 , ..., vm # Rn. The convex hull of a subset of v0 , ..., vm with p
elements is called a p-face of S. One-dimensional faces are edges, and faces
of dimension m&1 are facets. An m-simplex is regular if all edges are of
equal length. The length of the longest edge of S is called the edge size or
diameter h.

For a vector-valued function f : S � Rl,

Lf (x) := :
m

i=0

*i (x) f (vi) (1)

is the unique linear polynomial that interpolates f at the vertices of S.
Here and below, the functions *i provide the barycentric coordinates
with respect to the vertices of S, i.e., the *i are the unique (scalar) linear
polynomials on S for which

x= :
m

i=0

*i (x) vi , :
m

i=0

*i (x)=1, x # S. (2)

Let

&h1&� :=max
x # S

|h1(x)|, &h2&2, � :=max
x # S

&h2(x)&2

denote the �-norm of a scalar function h1 and a vector-valued or matrix-
valued function h2 on S. We will consider the interpolation error of the
form

E� :=E�( f, S ) :=& f&Lf &2, � .

It is well known that this interpolation error is below two times the
distance between f and the space of all linear polynomials on S (see
[4, p. 40]).

3. SIMPLEX BALLS

We commence the derivation of best error bounds for E� with an
investigation of balls around simplices. Let S be an m-simplex with vertices
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v0 , ..., vm in Rn, and B=B(c, r) an m-dimensional ball with center c and
radius r in Rn. The ball B circumscribes S if all vertices v0 , ..., vm lie on the
boundary of B. B is called a simplex ball of S if S�B and if B has the
smallest radius among all balls containing S. If B circumscribes a face of S,
then B is called a face ball. A face ball is enfolding if it contains the whole
simplex S, and is valid if its center c lies within the face. The first proposi-
tion states existence and uniqueness of circumscribed balls and simplex
balls.

Proposition 3.1. Let S be an m-simplex in Rn. Then, the following is
true:

(i) S has one and only one circumscribed ball in Rn, denoted by BC .

(ii) S has one and only one simplex ball in Rn, denoted by BS .

Proof. (i). The case m=n is a well-known fact which results, e.g.,
from the ball equation (see [1, p. 249]). The case m<n can be proved
through a projection of Rn onto the affine hull of S.

(ii) Since S is compact, existence and uniqueness of the simplex ball
are immediately obvious.

Figure 1 shows the circumscribed ball BC , the simplex ball BS , and two
face balls B1 and B2 of a 2-dimensional simplex. In this example, cS lies on
the longest edge of the triangle. Besides the definition, a simplex ball

FIG. 1. Circumscribed ball BC(cC , rC), simplex ball BS(cS , rS), and face balls B1(c1 , r1)
and B2(c2 , r2) of a triangle (2-simplex).
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has many other characterizations which can be helpful for numerical
computation of the ball radius.

Proposition 3.2. Let S be an m-simplex with circumscribed ball BC(cC , rC)
and simplex ball BS(cS , rS) in Rn. Let B(c, r) be an m-dimensional ball in Rn.
Then, the following statements are equivalent:

(i) B=BS .

(ii) B is an enfolding face ball of S with the smallest radius among all
enfolding face balls of S.

(iii) B is a valid face ball of S with the largest radius among all valid
face balls of S.

(iv) B is a ball with

c=argmin[max
y # S

&x& y&2 | x # S] and r=max
y # S

&c& y&2 .

(v) B is a ball with

c=argmin[&x&cC &2 | x # S] and r=- r2
C&&c&cC&2

2 .

Proof. See [15, p. 36] for a verification. K

4. ERROR ESTIMATES

Now, we return to the main problem of finding estimates for the inter-
polation error E� . In a first step, we consider only real-valued functions.
The following lemma describes the difference between a function and its
linear interpolant on a simplex.

Lemma 4.1. Let S be an n-simplex with vertices v0 , ..., vn and circum-
scribed ball BC(cC , rC) in Rn. Let f : S � R be a real�valued function and
s=Lf the linear polynomial that interpolates f at the vertices of S.

(i) Using barycentric coordinates, for x # S

f (x)&s(x)= :
n

i=0

*i (x)( f (x)& f (vi)).

(ii) If f # C2(S ), then for each x # S, there exists ! # S and w # Rn"[0]
such that

f (x)&s(x)=
wTf "(!) w

2wTw
((x&cC)T (x&cC)&r2

C).
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Proof. (i) The representation of f (x)&s(x) is an immediate consequence
of (1) and (2).

(ii) For x # S, x{vi , we consider the auxiliary function h : S � R
with

h(z) :=( f (z)&s(z))&
q(z)
q(x)

( f (x)&s(x)),

q(z) :=(z&cC)T (z&cC)&r2
C .

The function h vanishes at the vi and at x, hence

h(x)=0= :
n

i=0

*i (x) h(vi),

showing that h fails to be strictly concave or convex on S, hence h" must
fail to be definite somewhere on S. So, there is ! # S and w # Rn"[0] with
wTh"(!) w=0. From

0=wTh"(!) w=wTf "(!) w&
wT2Iw
q(x)

( f (x)&s(x))

we can conclude the assertion. K

The second lemma deals with the maximization of two special functions
needed later in Theorem 4.1.

Lemma 4.2. Let S be an n-simplex with vertices v0 , ..., vn , circumscribed
ball BC(cC , rC), and simplex ball BS(cS , rS) in Rn. Let g1 , g2 : S � R be two
non-negative functions defined by

g1(x) := :
n

i=0

*i (x) &x&vi&2 and g2(x) :=r2
C&&x&cC&2

2 .

Then, the following is true:

(i) max
x # S

g1(x)=rS

(ii) max
x # S

g2(x)=r2
S

Proof. The center cS lies in the relative interior of a possibly lower-
dimensional face F spanned by the set of vertices V of S. The distance
from each v # V to cS is rS . Otherwise, a smaller enfolding ball could be
constructed. This would contradict the definition of a simplex ball as the
smallest enfolding ball (see also Proposition 3.2(iii)).
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(i) Using the Cauchy�Schwarz inequality, g1 can be estimated
according to

g1(x)= :
n

i=0

(- *i (x))(- *i (x) &x&vi &2)

�� :
n

i=0

*i (x) &x&vi&
2
2

=� :
n

i=0

*i (x) &(x&cC)&(vi&cC)&2
2

=- &x&cC &2
2&2 &x&cC &2

2+r2
C

=- g2(x).

From part (ii) it follows that g1�rS on S. Since &cS&v&2=rS for all v # V,
g1(cS)=rS . An alternative proof can be established with an idea of
P. Shvartsman (see [5]). That proof avoids the Cauchy�Schwarz inequality
and uses concave functions instead.

(ii) The assertion follows immediately from Proposition 3.2(v).
However, the result can also be obtained from some geometric facts con-
cerning simplices and spheres (cf. [6]), as follows. If cS=cC , the proof is
straightforward. If cS {cC , cC&cS is perpendicular to F since V��BC and
V��BS . With Pythagoras we have

&cC&cS&2
2=&cC&v&2

2&&v&cS &2
2=r2

C&r2
S

for all v # V. Since

&x&cC &2
2=&x&cS &2

2+2(x&cS)T (cS&cC)+&cS&cC&2
2 ,

therefore

r2
C&&x&cC&2

2=r2
S&&x&cS &2

2&2(x&cS)T (cS&cC)

for all x # S. Taking into account that (x&cS)T (cS&cC)�0 on S, we
arrive at

g2(x)�r2
S&&x&cS&2

2�r2
S

with equality for x=cS . K

Now we are prepared to state a first theorem about error estimates
which includes extremal functions to prove the sharpness of all inequalities.
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Theorem 4.1. Let S be an n-simplex with simplex ball BS(cS , rS) in Rn.
Let f : S � R be a real-valued function and s=Lf the linear polynomial that
interpolates f at the vertices of S. Let |( f, } ) denote the modulus of
continuity of f. Then, the estimates

(i) E��K1 |( f, 2rS)

(ii) E��K0 & f &� if f # C0(S )

(iii) E��K1 rS L if f is Lipschitz continuous with constant L
(iv) E��K1 rS & f $&2, � if f # C1(S)

(v) E��K2 r2
S & f "&2, � if f # C2(S )

with the constants

K0=2, K1=1, K2= 1
2

hold, and the constants are best possible.

Proof. (i) Using Lemma 4.1(i), E� can be estimated by

E��max
x # S \ :

n

i=0

*i (x) | f (x)& f (vi)|+�|( f, 2rS).

(ii) As an immediate consequence of (i), we obtain

E��|( f, 2rS)�2 & f &� .

(iii) With Lemma 4.1(i) and Lemma 4.2(i), it is easy to see that

E��max
x # S \L :

n

i=0

*i (x) &x&vi &2+�LrS .

(iv) Applying the mean value theorem, Lemma 4.1(i), and Lemma 4.2(i),
we obtain

E�� max
x, !i # S \ :

n

i=0

*i (x) & f $(!i)&2 &x&vi&2+�& f $&2, � rS .

(v) Let BC(cC , rC) be the circumscribed ball of S. With Lemma 4.1(ii)
and Lemma 4.2(ii), we have

E�� max

w # Rn"[0]
x, ! # S }w

Tf "(!) w
2wTw \(x&cC)T (x&cC)&r2

C+}

�
1
2

max
x # S \r2

C&&x&cC &2
2+ & f "&2, ��

1
2

r2
S & f "&2, � .
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In parts (i) and (ii), the distance function

f (x) :=2 &x&cS&2&rS

is an example proving the sharpness of the constants. In fact, we have
E�=2rS , |( f, 2rS)=2rS , and & f &�=rS . The power function

f (x) :=&x&cS&:
2 , f $(x)=: &x&cS &:&2

2 (x&cS)T

shows optimality of the constants in parts (iii) and (iv). In the limit
: � 1+, we obtain E�=r:

S � rS and L=& f $&2, �=:r:&1
S � 1. In part (v),

we consider the quadratic function

f (x) :=(x&cS)T (x&cS), f $(x)=2(x&cS)T, f "(x)=2I.

Here, E�=r2
S and & f "&2, �=2. K

In a third lemma, we discuss the relation between the diameter of a
simplex and its simplex ball radius.

Lemma 4.3. Let S be an m-simplex with diameter h and simplex ball
radius rS in Rn. Then, the estimates

Kminh�rS�Kmax h

with the constants

Kmin=
1
2

, Kmax=� m
2(m+1)

hold, and the constants are best possible.

Proof. The lower inequality is straightforward. Since the simplex ball is
enfolding, its radius is at least h�2. The orthogonal m-simplex

Smin :=conv {&
h
2

e1 ,
h
2

e1 , ...,
h
2

em=
in Rn with ei denoting the i th unit vector in Rn has diameter h. Its simplex
ball is centered at cS=(0, ..., 0)T. Hence, rS=h�2. The upper inequality is
a special case of Jung's theorem (see [10, 2.10.41, p. 200]). The regular
m-simplex

Smax :=conv { h

- 2
e1 , ...,

h

- 2
em+1=
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FIG. 2. Tetrahedron (3-simplex) with minimal and maximal simplex ball radius rS with
respect to the diameter h.

in Rm+1 with e i now denoting the i th unit vector in Rm+1 has diameter h,
and its simplex ball is centered at cS=((h�- 2 (m+1)), ..., (h�- 2 (m+1))T

with rS=(- m�- 2(m+1)) h. Moreover, any regular m-simplex in Rn with
diameter h has this simplex ball radius. K

In Fig. 2, Smin and Smax are shown for the case n=m=3. As a final
preparation we introduce appropriate measures for the derivatives of a
function f =( f1 , ..., fl)T # Ck(S ) on a simplex S. The bounds of the k th
derivative of f can be expressed by

Mk := max
1� j�l \max

x # S \ max

&w&2=1
w # Rn }

�kfj

�wk (x) }++ , k=0, 1, 2

in terms of derivatives in any directions, or by

M� k := max
1� j�l \max

x # S \ max
1�&1 , ..., &k�n }

�kfj

>k
+=1 �x&+

(x) }++ , k=0, 1, 2

in terms of partial derivatives. The results of Theorem 4.1 can be gener-
alized from real-valued to vector-valued functions, and from n-simplices to
m-simplices with m�n in Rn. Moreover, the following theorem states the
error in dependence of both the diameter and the simplex ball radius.

Theorem 4.2. Let S be an m-simplex with diameter h and simplex ball
radius rS in Rn. Let f =( f1 , ..., fl)T : S � Rl be a vector-valued function and
s=(s1 , ..., sl)T=Lf the linear polynomial that interpolates f at the vertices of
S. Then, the estimates
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(i) E��K0, 1 M0 if f # C0(S )

(ii) E��K1, 1 rSM1�K1, 2hM1�K1, 3hM� 1 if f # C1(S )

(iii) E��K2, 1 r2
SM2�K2, 2 h2M2�K2, 3h2M� 2 if f # C2(S )

with the constants

K0, 1=2 - l

K1, 1=- l, K1, 2=
1

- 2 � m

m+1
- l, K1, 3=

1

- 2 � m

m+1
- n - l

K2, 1=
1
2

- l, K2, 2=
1
4

m
m+1

- l, K2, 3=
1
4

m
m+1

n - l

hold, and those constants preceding M0 , M1 , and M2 are best possible.

Proof. Notice that Theorem 4.1 is also valid for arbitrary m-simplices
with 0�m�n. For all three smoothness classes, we can permute norm
operator and maximizing operator, and obtain

max
x # S

| f1(x)&s1(x)|

E�=max
x # S

& f (x)&s(x)&2�"\ b +"
2

max
x # S

| fl(x)&sl(x)|

�- l max
1� j�l

(max
x # S

| fj (x)&sj (x)| ). (3)

Now, it is possible to apply Theorem 4.1 in each component of the error
vector.

(i) If f # C0(S ), we conclude from (3)

E��- l max
1� j�l

(2 & fj &�)=2 - l M0 .

(ii) If f # C1(S ), (3) yields

E��- l max
1� j�l

(rS & f j$&2, �)=- l rS M1 .

The second and third inequality follow from Lemma 4.3 and

& f j$ (x)&2�- n max
1�&�n }

�fj

�x&
(x) } .
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(iii) If f # C2(S ), using (3), the interpolation error is bounded by

E��- l max
1� j�l

( 1
2 r2

S & f j"&2, �)= 1
2 - l r2

SM2 .

Let & }&F denote the Frobenius norm of a matrix. Since the spectral norm
is the smallest matrix norm, we have

& f j"(x)&2�& f j"(x)&F�n max
1�&1 , &2�n }

�2f j

�x&1
�x&2

(x) } .
Once more, inserting Lemma 4.3 completes the estimations.

To see that the constants in terms involving M0 , M1 , and M2 are best
possible, consider vector-valued functions that consist of the example func-
tions of Theorem 4.1 in each component. For these functions on regular
simplices, all estimates are sharp. K

5. DISCUSSION AND PREVIOUS RESULTS

The circumscribed ball radius, the simplex ball radius, and the diameter
measure the size of a simplex in different ways. All three quantities are
independent of geometric simplex properties such as angles or edge length
proportions. The radius of a circumscribed ball tends to infinity if any
simplex angle tends to zero. In contrast, the radius of a simplex ball as well
as the diameter stays bounded. Hence, the simplex ball radius and the
diameter are better suited to describe the interpolation error. In general,
the diameter is more accessible for numerical computation than a ball
radius. Similar arguments apply with respect to the derivatives. Sharp
inequalities can be obtained when admitting derivatives in any directions,
whereas partial derivatives are the better choice for computational pur-
poses. To be precise, Theorem 4.2 contains two slightly different types of
sharpness. For all simplices there exist functions that turn the inequalities
with Kk, 1 into equalities. The sharpness of the inequalities with Kk, 2 is in
some sense weaker since there are functions with which equality can be
achieved only on regular simplices.

Finally, we compare the results of Theorem 4.1 and Theorem 4.2 with
previous results. All inequalities are well known in the univariate case.
Some authors preferred alternative approaches that involve univariate as
well as multivariate Taylor expansions of f around vertices and auxiliary
points. Prenter [14, p. 142], e.g., followed such a method for n=m=2,
l=1, and f # C2, and obtained a constant of 4 for M� 2 . Ha� mmerlin
[11, p. 243] reduced the value to 3

2+- 3. In comparison with these early
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results, the constant K2, 3= 1
3 is a significant improvement. Subbotin proved

inequalities involving K2, 2 in the bivariate case (see [16, Proposition 1])
and in the general case (see [17, Theorem 1]) using an inductive argument.
In [5], the derivation of K1, 1 is based on an argument of P. Shvartsman
(cf. Lemma 4.2). For the bivariate case and l=1, Handscomb [12, p. 14]
derived K2, 1 for acute-angled triangles, and the constant 1

8 otherwise. The
latter constant is valid only for obtuse-angled triangles, whereas K2, 2= 1

6 is
the smallest constant for triangles of general shape. In a recent paper,
Waldron used divided difference functionals to obtain K2, 1 (cf. [18,
Theorem 3.1.]), but writes the term r2

S in the more complicated way
r2

C&dist2(cC , S ). Lp bounds are also considered in that paper. Most
constants of Theorem 4.2 and a discussion of simplex balls can be found in
[15, p. 31].

6. CONCLUSION

Roughly speaking, the interpolation error depends linearly or quadrati-
cally on the simplex size if f # C1 or f # C2, respectively. The estimates
presented in this paper and consequently the actual linear interpolation
error are bounded on simplices of any shape. This is contrary to the
popular fallacy within the FEM community which states that triangles
or tetrahedrons with small angles are bad. The dimension l of the image
space of f as well as the dimension n of the embedding space and the
dimension m of the simplex have an influence on the estimates. Future
work can be done on the question of how these results can be generalized
to higher-order interpolation.
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